Synthesis of sulfonic acid-functionalized Fe3O4@C nanoparticles as magnetically recyclable solid acid catalysts for acetalization reaction.

نویسندگان

  • Fang-Cai Zheng
  • Qian-Wang Chen
  • Lin Hu
  • Nan Yan
  • Xiang-Kai Kong
چکیده

The Fe3O4@C core-shell magnetic nanoparticles with an average size of about 190 nm were synthesized via a one-pot solvothermal process using ferrocene as a single reactant. The sulfonic acid-functionalized Fe3O4@C magnetic nanoparticles were obtained by grafting the sulfonic groups on the surface of Fe3O4@C nanoparticles to produce magnetically recyclable solid acid catalysts. The as-prepared products were characterized by X-ray diffraction and transmission electron microscopy. The catalytic performance of the as-prepared catalysts was examined through the condensation reaction of benzaldehyde and ethylene glycol. The results showed that the catalysts exhibited high catalytic activity with a conversion rate of 88.3% under mild conditions. Furthermore, catalysts with a magnetization saturation of 53.5 emu g(-1) at room temperature were easily separated from the reaction mixture by using a 0.2 T permanent magnet and were reused 8 times without any significant decrease in catalytic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives

The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2) nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES) with magnetic graphene oxide (Fe3O4-GO). It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO alo...

متن کامل

Fe3O4@Silica Sulfuric Acid Nanoparticles as a Magnetically Recoverable Solid Acid Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

A new efficient method for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and spiroquinazolinones via a condensation reaction of aldehydes and ketones with anthranilamide in the presence of nano Fe3O4@SiO2-SO3H as catalyst in ethanol has been described. The reactions are completed in short times, and the corresponding dihydroquinazolinones are produced with high yields. The present procedure...

متن کامل

Fe3O4@silica sulfuric acid nanoparticles as a potent and recyclable solid acid catalyst for the synthesis of indole derivatives

Fe3O4 magnetic nanoparticles were synthesized by co-precipitation of Fe2+ and Fe3+ in aqueous NaOH. Then silica was coated on the obtained nanoparticles and the whole composite was functionalized with chlorosulfonic acid in CH2Cl2. The obtained nanocomposite (Fe3O4@SiO2-SO3H) was characterized by FT-IR, VSM and XRD techniques and was used as an efficient catalyst in condensation reaction of ind...

متن کامل

A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives

ABSTRACT The functionalization of silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) using chlorosulfonic acid were afforded sulfonic acid-functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2-SO3H) that can be applied as an organic-inorganic hybrid heterogeneous catalyst. The used Fe3O4 magnetic nanoparticles are 18-30 nm sized that was rapidly functionalized and can be used as catalyst...

متن کامل

-OSO3H Functionalized Mesoporous MCM-41 Coated on Fe3O4 Nanoparticles: an Efficient and Recyclable Nano-Catalyst for Preparation of 3,2′-Bisindoles

Mesoporous MCM-41 was coated on Fe3O4 nanoparticles and then functionalized with sulfurochloridic acid to provide a core-shell solid acid nano-catalyst. The catalyst was characterized by transmission electron microscopy (TEM), infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), Brunauer-Emmet-Teller analysis (BET) and vibrating sample magnetometery (VSM). The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 2014